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Outline

� some background: scattering, (quantum) chaotic scattering

� supersymmetry for distributions

� exact results for scattering matrix elements

� exact results for cross sections
� comparison with microwave experiments

� �rst steps towards comparison with nuclear data
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Introduction: Scattering
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Scattering Process

waves propagate in (�ctitious) channels, scattered at targ et

scattering matrix S connects ingoing and outgoing waves

channel a

b

c

d

e

zone
interaction

M channels,

S is M � M

�ux conservation

SSy = 1M = SyS

no direct reactions (a 6= b) �! energy average S diagonal

transmission coef�cients Ta = 1 � j Saaj2
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Scattering Experiments in Nuclear Physics

differential cross sections, squares of scattering matrix elements

this example: Richter et al. (1960's)
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Different Regimes in Nuclear Scattering

from isolated resonances towards Ericson regime

Clarke, Almqvist, Paul (1960's)
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Scattering Experiments with Classical Waves

microwaves

elastic
reveberations

direct measurement of the scattering matrix

Weaver, Ellegaard, Stöckmann, Richter, Shridar groups (90's...10's)
East Lansing, March 2017



(Quantum) Chaotic Scattering
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Mexico Approach to Stochastic Scattering

to study statistics, S itself modeled as a stochastic quantity
minimum information principle yields probability measure

P(S)d� (S) �
d� (S)

j det� (M � 1)+2 (1M � ShSi y)j

� no invariance under time–reversal: S unitary, � = 2

� invariance under time–reversal:
� spin–rotation symmetry: S unitary symmetric, � = 1
� no spin–rotation symmetry: S unitary self–dual, � = 4

input: ensemble average hSi ; assume hSi = S

problem: energy and parameter dependence not clear !

Mello, Pereyra, Seligman (1980's)
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Microscopic Description of Scattering Process ...

H =
NX

n;m =1

jni Hnm hmj +
MX

a=1

Z
dE ja; Ei E ha; Ej

+
X

n;a

�
jni

Z
dE Wna ha; Ej + c:c:

�

bound states
Hamiltonian H

N � 1 bound states jni

M channel states ja; Ei

coupling Wna

H ,

|e,E>

|d,E>

|c,E>

|b,E>

|a,E>

|n>

Wna
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... Yields Scattering Matrix

Sab(E) = � ab � i2�W y
a G(E)Wb

with matrix resolvent containing bound states Hamiltonian H

G(E) =
1N

E1N � H + i�
MX

c=1

WcW y
c

absence of direct reactions consistent with orthogonality

W y
a Wb =

 a

�
� ab

Mahaux, Weidenmüller (1969)
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Heidelberg Approach to Stochastic Scattering

Hamiltonian H modeled as a Gaussian random matrix

P(H ) � exp
�

�
N�
4v2

tr H 2

�

form of P(H ) irrelevant on local scale of mean level spacing

�! two universalities, experimental and mathematical

� no invariance under time–reversal: H Hermitean, � = 2

� invariance under time–reversal:
� spin–rotation symmetry: H real symmetric, � = 1
� no spin–rotation symmetry: H Hermitean self–dual, � = 4

Weidenmüller (1960's)
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Chaotic Statistics, Example: Compound Nucleus

regular

chaotic

spacing distribution p(s)

probability density to �nd two
adjacent levels in distance s

Bohigas, Haq, Pandey (1983)
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Counter Example: Collective Excitations in Nuclei

single particle versus collective excitations

scissors mode oscillations, all neutrons $ all protons
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�! chaotic versus regular statistics

�! crossover transitions are frequent !

Enders, Guhr, Huxel, von Neumann–Cosel, Rangacharyulu, Richter (2000)
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Some Important Results in this Context

two–point correlation functions hSab(E1)Scd(E2)i
� = 1 Verbaarschot, Weidenmüller, Zirnbauer (1985)
� = 2 Savin, Fyodorov, Sommers (2006)

higher order correlations, perturbative time–invariance breaking
Davis, Boosé (1988, 1989), Davis, Hartmann (1990)

distribution of diagonal elements P(Saa(E))
Fyodorov, Savin, Sommers (2005)

correlation functions on mixing graphs
Pluha�r, Weidenmüller (2014)

obtained with supersymmetry, but does in this form not work for
distribution P(Sab(E)); a 6= b �! new method needed
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Supersymmetry for Distributions
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Distribution of Scattering Matrix Elements

Sab(E) = � ab � i2�W y
a G(E)Wb

wish to calculate distribution of real and imaginary part

} s(Sab) = �
�
(� i )sW y

a GWb + i sW y
b GyWa

�

such that

x1 = } 1(Sab) = Re Sab(E) and x2 = } 2(Sab) = Im Sab(E)

distribution given by

Ps(xs) =
Z

d[H ] exp(� tr H 2)� (xs � } s(Sab)) ; s = 1; 2

East Lansing, March 2017



Characteristic Function

obtain distribution by Fourier backtransform of

Rs(k) =
Z

d[H ] exp(� tr H 2) exp(� ik} s(Sab))

insert de�nition of scattering matrix

Rs(k) =
Z

d[H ] exp(� tr H 2) exp(� ik�W yAsW)

with W =
�
Wa

Wb

�
and As =

�
0 (� i )sG

i sGy 0

�

where As Hermitean, but contains H inverse

problem: have to invert As to perform H average !

East Lansing, March 2017



Crucial Trick

Fourier transform in W space ! — Yields

exp(� ik�W yAsW)

�
Z

d[z] exp
�

i
2

(W yz + zyW)
�

det �= 2A � 1
s exp

�
i

4�k
zyA � 1

s z
�

now use anticommuting variables

det �= 2A � 1
s �

Z
d[� ] exp

�
i

4�k
� yA � 1

s �
�

now H linear in exponent �! supersymmetry applicable !

different rôle of commuting and anticommuting variables
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Supermatrix Model

Hubbard–Stratonovitch transformation gives

Rs(k) =
Z

d[%] exp
�

� r str %2 �
�
2

str ln � �
i
4

Fs

�

with 8=� � 8=� supermatrix %and r = 4�� 2k2N=v2

� = %E 
 1N +
i

4k
L 


MX

c=1

WcW y
c ; %E = %�

E
4�k

18=�

matrix L is some superspace metrik

Fs � [W y 0y] � � 1

�
W
0

�
, projects onto boson–boson space

�! symmetry breaking differs from the one for correlations
East Lansing, March 2017



Supersymmetric Non–Linear � Model

limit N �! 1 , unfolding by saddlepoint approximation
integrate out “massive” modes

left with integral over “Goldstone” modes Q,
free rotations, coset manifold in superspace

Rs(k) =
Z

d� (Q) exp
�

�
i
4

Fs

� MY

c=1

sdet� �= 2
�

18=� +
i c

4�k
Q� 1

E L
�

integrate out all remaining anticommuting variables

left with ordinary integrals, two for � = 2, four for � = 1

�! drastically reduced number of integration variables

East Lansing, March 2017



Analytical Results

versus

Numerics
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Reproducing the Circular Ensemble for � = 2
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Far Away from the Circular Ensemble for � = 2
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Towards Ericsson Regime for � = 2
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Towards Ericsson Regime for � = 1
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Analytical Results

versus

Microwave Experiment
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... vs Numerics and Experiment for � = 1
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Analytical Result vs Experiment for � = 1
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Distribution of Cross Sections
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No Way Around the Joint Probability Density

cross section � ab(E) = jSab(E)j2 = Re 2Sab(E) + Im 2Sab(E)

need joint pdf P(ReSab; Im Sab) = P(Sab; S�
ab)

to calculate p(� ab) =
Z

d2Sab P(Sab; S�
ab) � (� ab � j Sabj2)

good news: can extend previous calculation into complex plane

characteristic R(k; k� ) =
Z

d[H ] exp(� tr H 2) exp(� iRek� Sab)

simply replace real k with complex k = k1 + ik 2 everywhere

distribution p(� ab(E)) =
Z

d2k R(k; k� ) J0(
p

� ab(E)jkj)

East Lansing, March 2017



Analytical Results

versus

Microwave (and some Nuclear) Data
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Characteristic Functions for Microwave Data

� =D = 0:234 � =D = 1:21
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Cross Section Distributions

microwaves � =D = 1:21 nuclear data 37Cl(p,� )34S

p(0) � 1 indicates Ericson regime
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Conclusions and Outlook

� solved longstanding problem within Heidelberg approach

� now have supersymmetry for distributions

� distributions of scattering matrix elements and cross sections

� additional results: characteristic function generates moments,
integral representations for all of them

� full analytical understanding of transition to Ericson regime

� Brouwer's equivalence proof Heidelberg–Mexico
implies: now have explicit handle on Mexico approach
for arbitrary channel number

� comparison with microwave and nuclear data

� also: condensed matter and wireless communication

East Lansing, March 2017


	
	Collaborators
	Outline
	
	Scattering Process
	Scattering Experiments in Nuclear Physics
	Different Regimes in Nuclear Scattering
	Scattering Experiments with Classical Waves
	
	Mexico Approach to Stochastic Scattering
	Microscopic Description of Scattering Process ...
	{...} Yields Scattering Matrix
	Heidelberg Approach to Stochastic Scattering
	Chaotic Statistics, Example: Compound Nucleus
	Counter Example: Collective Excitations in Nuclei
	Some Important Results in this Context
	
	Distribution of Scattering Matrix Elements
	Characteristic Function
	Crucial Trick
	Supermatrix Model
	Supersymmetric Non--Linear $sigma $ Model
	
	Reproducing the Circular Ensemble for $�eta =2$
	Far Away from the Circular Ensemble for $�eta =2$
	Towards Ericsson Regime for $�eta =2$
	Towards Ericsson Regime for $�eta =1$
	
	{...} vs Numerics and Experiment for $�eta =1$
	Analytical Result vs Experiment for $�eta =1$
	
	No Way Around the Joint Probability Density
	
	Characteristic Functions for Microwave Data
	Cross Section Distributions

